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Abstract

An experimental digital platform is developed as an environment on which to

evaluate digital control strategies for dexterous manipulation with a pneumatically

actuated tendon-driven manipulator. This environment is used to begin the study

of advanced control methods that are suitable for providing the tracking accuracy

required for grasping and dexterous manipulation with a pneumatically actuated

tendon-driven end-effector. The digital platform consists of a PC/AT-386 and a sin-

gle board MC68020 microcomputer in a VME chassis with shared RAM between the

two processors to control the Utah/MIT Dexterous Hand (UMDH). The MC68020

controls the A/D and D/A access for the UMDH, while the ARCADE-HAND ex-

perimental control environment is hosted on the PC/AT-386 for user interface and

control determinations. An Adaptive Model-Based Control (AMBC) algorithm is

implemented and experimentally evaluated on the UMDH. Tracking performance is

compared to the PD baseline controller of the ARCADE._HAND environment and

evaluated for the requirements of human finger emulation. The evaluation includes

compensation for unknown dynamics of the UMDH system, adaptability to unknown

payloads, and multiple trajectory tracking capabilities. The superior tracking of the

AMBC algorithm demonstrates the potential of the technique for emulation of hu-

man finger movement.

vii



Digital Control of the

Utah/MIT Dexterous Hand:

Initial Evaluation and Analysis

L Introduction

1.1 Motivation

One problem in gross motion robot control is how to provide dexterous hand

motion. A solution to this problem is one requirement for realizing a manipulator

capable of emulating human performance. The Air Force is interested in developing

human performance capabilities in order to remove the human operator from the

site of hazardous operations while still providing the cognitive capabilities required

to perform the required tasks. A manipulator that is able to emulate human perfor-

mance is one prerequisite for achieving Air Force Telepresence Program objectives.

To meet the requirements of robotic telepresence, present research on gross motion

control must be expanded into the area of dexterous hand motion.

1.2 Objective

A new major initiative of robotic research at the Air Force Institute of Tech-

nology (AFIT) is the development of technologies required for semi-autonomous

dexterous manipulation. The goal of this thesis effort is two-fold. The first goal

is to develop an experimental platform that provides the capability to develop and

evaluate digital control strategies for dexterous manipulation with a tendon-driven

manipulator. The second goal is to use the new experimental platform to begin

the study of advanced control methods that are suitable for providing the tracking
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accuracy required for grasping and dexterous manipulation with a tendon-driven

end-effector.

1.3 Problem Statement

Research on gross motion control aspects of robotic telepresence has been on-

going at AFIT for the past four years. Those efforts have concentrated on the

development and evaluation of control methods which may lead to a robotic arm

emulating human arm performance. The latest direction of this research, toward

the long range goal of robotic telepresence, is developing technologies required for

semi-autonomous dexterous manipulation. To pursue this avenue of study a robotic

system platform must be designed and implemented that provides grasping and ma-

nipulation capabilities. The Utah/MIT Dexterous Hand (UMDH), on loan from the

Armstrong Aeromedical Medical Research Laboratory, is a tendon-driven robotic

manipulator which was designed to provide such capabilities. The system capabil-

ities of the UMDH must be enhanced in order to provide a suitable platform for

digital control studies. Once the platform is established, a control system must be

developed that provides dexterous motion to the UMDH.

The mechanism responsible for providing grasping and manipulation with a

tendon-driven manipulator is the control system. Controlling a robotic manipulator

is complicated by the coupled and nonlinear nature of robotic dynamics. The control

of a tendon-driven manipulator is further complicated by the employment of tendons

which are routed through the rranipulator, and indirect drive systems which intro-

duce additional nonlinearity and coupling. These complications make many present

day control schemes ir -ppropriate. Consequently, alternative control approaches

must be developed and evaluated to provide the control capabilities needed to pro-

vide the accurate dexterous motion required for grasping and manipulation.
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1.4 Scope

The foundation for this effort was laid by the previous studies of gross motion

control for the PUMA 560 robot arm [18, 19, 20, 23]. The scope of this research

was based on the tendon-driven UMDH (left-hand) and its control electronics. The

UMDH was used as a case study because: the hand system was made available

by the Armstrong Aeromedical Medical Research Laboratory, the dynamics are not

well-known, and it is a good case study for human finger movement emulation. At

the start of this research, the capabilities at AFIT provided only for analog control

of the UMDH. In order to facilitate the development and evaluation of alternative

control approaches, a digital capability must be provided. The initial task was the

development of the digital control computer system for the UMDH.

Once the digital control computer system was developed, the focus changed to

determining a controller for the UMDH that is suitable for human finger movement

emulation. Experimental studies of control systems for robotic devices with unknown

system models are scarce and simulation studies are inadequate. Corsequently, all

design and analysis work was based on experimental data. In order to reduce the

complexity of the design and analysis, only one finger of the UMDH was used in

the experimental evaluations. The procedures to achieve gross motion control of one

finger are directly transferable to the other fingers of the hand.

One proven form of robotic control is model-based control. This control method

provides excellent trajectory tracking performance when an accurate system model

of the manipulator is available [20, 2, 14, 15]. However, an accurate system model is

not always attainable, as is the case for the UMDH. Adaptive model-based control

approaches have been proposed as a means to provide improved control accuracy for

robotic systems without significant a priori knowledge of system system dynamics

(36, 39]. The unknown robotic dynamics are trained by adaptive mechanisms to

provide a best-fit model for the system. These control systems offer promise for

controlling highly nonlinear and coupled manipulators and have proven successful
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in the control of the PUMA 560 industrial manipulator at AFIT [21]. The ability

of Adaptive Model-Based Control (AMBC) to function without a priori knowledge

and to adapt to dynamic uncertainties make it a promising choice for the UMDH.

Recent application of artificial neural networks to system control, especially in

the area of robotics, offers an alternative solution for control of nonlinear and highly

coupled robotic systems. Capt. Mark Johnson developed the Adaptive Model-Based

Neural Network Control (AMBNNC) technique which uses artificial neural networks

to provide a payload invariant controller [13]. W. Thomas Miller III at the Uni-

versity of New Hampshire developed a robotic controller using the principles of the

Cerebellar Model Articulation Controller presented by J. S. Albus [1] in parallel

with a fixed-gain controller and implemented the controller on an industrial ma-

nipulator [28, 29). Another system controller using the Adaptive Linear Threshold

Element (ADALINE) artificial neural network proposed by Bernard Widrow [44]

was developed to both model and control a truck-backer-upper [31]. This was done

in simulation and the principles hold promise for the robotic manipulator control

system required to control a tendon-driven manipulator.

1.5 Method of Approach

Initially, the digital control computer system for the UMDH was developed

and evaluated. The analog controller of the UMDH was bypassed and a new digital

computer control system environment implemented. Once development of the digital

computer system was completed, a revised version of AFIT's ARCADE computer

environment [18], ARCADE-HAND, was rehosted ontc the PC/AT-386 for the left-

handed version of the UMDH. ARCADE-HAND provides the ability to select test

conditions such as the fingers to be controlled, the control algorithm used, and

what error data to generate and store. The capability to control all four fingers

simultaneously was provided, althorigh present hardware limitations prevent this

from becoming a reality until a future date.
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With the ARCADE-HAND support available, simple finger Position-plus-Dcrivative

(PD) loops were developed and experimentally evaluated as the baseline controller

for the digital environment. The PD algorithm has been explored on the PUMA 560

and adjustments were made to adapt the control capabilities to the robotic hand.

From the baseline PD environment an alternative control method was developed

and evaluated. Recent in-house studies on robotic control methods have indicated

promising results from AMBC [21]. Consequently, the AMBC algorithm used on the

PUMA 560 was adapted for implementation on the UMDH digital control system.

The AMBC algorithm is developed and evaluated for its suitability for human finger

emulation. Efforts were initiated to develop an Artificial Neural Network Controller

for implementation on the UMDH, but time constraints did not permit experimental

evaluation.

1.6 Materials and Equipment

The following items have been acquired on loan from AAMRL/BBA:

" Utah/M.I.T. Dexterous Hand (left-hand)

* SARCOS control electronics for the hand

" Ironics IV-3273 System Controller

" Ironics IV-3201 VME-bus Multiprocessing Engine

* Data Translation A/D and D/A Converters

" BIT3 IBM PC/AT VME Adaptor

An IBM-386 PC is used to interface with the above equipment.

1. 7 Contributions

Completion of the objectives for this thesis mark a significant contribution to

AFIT's gross motion control studies. The digital control environment enables future
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dexterity and manipulation studies on the UMDH at AFIT. The AMBC control al-

gorithm was applied to the tendon-driven UMDH and experimentally evaluated for

applicability to dexterous motion control and and human finger movement emula-

tion. This thesis effort indicated that Adaptive Model-Based Cc.ntrol schemes are

applicable for emulation of human finger movements on a tendon-driven manipulator

and that similar types of algorithms might be used for future studies.
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II. Literature Review

2.1 Introduction

Research on gross motion control aspects of robotic telepresence has been on-

going at AFIT for the past four years under the broader aegis of the gross motion

control project. A new major initiative of AFIT robotic research is developing tech-

nologies required for semi-autonomous dexterous manipulation. These efforts are the

driving force behind the dexterous motion control project on the Utah/MIT Dex-

terous Hand (UMDH). This research develops a digital control environment for the

evaluation of alternative approaches to provide the dexterous motion required for

grasping and manipulation. Also, the first application and evaluation of a modern

control approach on a UMDH is conducted. The key components of this research are

the manipulator used for implementation of these control approaches and the control

methods employed to provide the required motion. The manipulator used for this

research is the UMDH. This unique platform, which was developed for research on

dexterity and manipulation, is discussed in detail in the next section. Following this

discussion is a review of the present status of robotic manipulator control research

and the applicability of those control methods to the UMDH.

2.2 Utah/MIT Dexterous Hand

The platform for this study is the UMDH [12, 11, 4, 10]. This is a tendon-

operated multiple-degree-of-freedom robotic hand that is designed to provide an

understanding of important issues related to machine-based artificial dexterity. Fig-

ure 2.1 shows a picture of the UMDH. The dexterous hand is approximately the

same size and geometry as the human hand. It includes three, rather than four,

four-degree-of-freedom fingers and one four-degree-of-freedom thumb. Other com-

ponents of the system are the palm, actuators, and sensors.

2-1



Figure 2.1. The Utah/MIT Dexterous Hand
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The three fingers and thumb act together to provide manipulation capability

similar to the human hand. The three fingers are arranged in a planar sequence to

allow formation of an adaptable surface against which the thumb can act. The four

degrees of freedom are provided by four joints in tach finger. These joints consist of

three parallel axis joints to provide curling action and a fourth proximal joint near the

palm, which is perpendicular to the other axes, provides side-to-side motion of the

finger. The three curling joints provide 0-95 degrees of excursion and the proximal

joint allows for lateral excursions of plus or minus 25 degrees. The thumb also

contains four active degrees of freedom and is configured to provide approximately

human-like motions during lateral and palmer grasps. The thumb's proximal joint

is capable of plus or minus 45 degree motions.

The palm is the structural mounting base for the fingers, thumb, and wrist. It

also provides a transition region for the tendons from the fingers and thumb that

must pass through the wrist to the actuation systems located on the forearm. For

multiple finger rrovements the palm provides a convenient reference frame. Unlike

the human hand, the manipulator's palm has no degrees of freedom. It is completely

stationary.

The tendons connect the joints to the actuators, which provide the power for

the system, much as our tendons connect from bone to muscle. The tendons are

composed of a special Kevlar and Dacron composite. The axial Kevlar fibers support

tension loads, and the Dacron mat, which is interwoven with the Kevlar, provides

abrasion protection for internal structures. The tendon system for the four joints of

each finger and thumb consists of eight tendons acting together as antagonist pairs,

one pair per joint. The tendons are routed over pulleys and run from an actuator to

the link to which it is clamped.

The most important factor that determines mechanical performance of the dex-

terous hand is the actuator performance. The dexterous hand requires 32 separate

actuators which produce the tendon tensions. A pneumatic system is used for the

2-3



actuators. The cylinders are ground-glass tubes with a 1.6 cm internal diameter that

have a graphite piston to provide a stroke of 3.2 cm. A small-diameter tension rod

is connected through a low-friction seal to provide tendon connection. The cylinders

are configured in a close pack 4 x 4 hexagonal array and stacked in two offset layers

to provide the 32 tendon actuators in a single package.

The sensors are the component that gives the system a sense of "intelligence"

and provides the information required for accurate control. Each joint contains a

sensor to measure angular deflection. These sensors are magnetically sensitive Hall

effect devices located in the proximal links. Also, each tendon has a tension sensing

system located in the wrist which is a semiconductor strain gauge that detects beam

strain due to load on the pulley from the tendon.

The UMDH is a useful test bed for fine motion control and dexterity studies.

The high degree of coupling and significant nonlinearities inherent in the structure

make it unsuitable for many of the more popular control systems in use today.

Consequently, it is necessary to develop and evaluate some alternative approaches.

2.3 Control Methods

Throughout the past decade, many manipulator control schemes have been

studied for applications on robotic devices. However, for various reasons many have

serious drawbacks in the control of a tendon-driven manipulator. These control

schemes can be broken up into three categories: Classical, Adaptive, and Artificial

Neural Network Controllers. Each of these categories has its own control implemen-

tations. Some of these implementations are discussed and their applicability to gross

motion control of the UMDH is evaluated.

2.3.1 Classical Controllers

2.3.1.1 Fixed-gain Feedback and Feedforward Cont-91 The simplest and

most common form of robot control is fixed-gain feedback control [15, 2]. This is
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often implemented in the form of independent joint Position-plus-Derivative (PD)

or Position-plus-Integral-plus-Derivative (PID) control of the form

r = K, d d- 4) + Kp(qd - q) + KI(qd- q).

This control has good endpoint accuracy but the tracking performance is poor, es-

pecially at high speeds.

An augmentation to this control method is the model-based technique of feed-

forward dynamics compensation. This control method, often called Simple Model-

Based Control (SMBC), includes a set of nominal torques based on the robotic system

dynamics. The feedforward torques are calculated based on the debired state vari-

ables and are fed forward to be added to the linear feedback terms to linearize the

system about the desired operating points. The feedforward terms can be computed

off-line since they are based on the desired trajectory. Although this augmentation

can significantly improve performance, it is limited by the accuracy and completeness

of the system model. Also, the discrepancy between the desired and actual trajectory

is not taken into account when calculating the feedforward terms [20, 15, 2].

2.3.1.2 Computed Torque Control Computed torque controllers compute

the dynamics on-line and make use of the sampled joint position, velocity, and/or

acceleration data in the calculations [24, 14, 15, 2]. This scheme utilizes nonlinear

feedback to decouple the manipulator. Computed torque controllers use a dynamic

model of the robot to calculate joint drive torques based on the measured state

variables for the specified trajectory. Although this method provides excellent re-

sults when the complete dynamics of a manipulator are known, this is only true

for a restricted set of manipulators. Computed torque controllers usually handle 3

to 5 actuators and have proven successful on industrial manipulators such as the

PUMA 560 [18]. As previously mentioned the UMDH employs 8 control actuators

per finger, thus significantly complicating the dynamic model and trajectories. Also,
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development of a dynamic model for the hand platform would be nearly impossible

due to the "stretchy tendons", increased joint friction, and other nonlinearities such

as the compliance of the pneumatic actuators [4, 121. Introduction of uncertainties

in payload, obstacle interference, and multiple tracking trajectories severely degrade

performance of the computed torque control scheme making it inapplicable to this

platform.

2.3.2 Adaptive Control

2.3.2.1 Model-Reference Adaptive Control Model-Reference Adaptive Con-

trol (MRAC) techniques have been introduced as a way to account for uncertain-

ties in the system model [34, 39, 36]. These methods no longer rely on previously

determined manipulator dynamics but instead use a general model and attempt

to modify the torque values based on position, velocity, and acceleration errors.

Seraji presented the development of a decentralized Lyapunov-based MRAC (LB-

MRAC) and implemented this controller on a PUMA 560 to support his claims

of improved performance [37, 36]. The proposed control scheme does not use the

complex robotic dynamic model. Instead, each joint is controlled simply by a PID

feedback controller and a position- velocity- acceleration feedforward controller, both

with adjustable gains. At the Air Force Institute of Technology (AFIT) experimental

evaluation was done of the decentralized LB-MRAC algorithm proposed by Seraji.

The algorithm's performance was inferior to a model-based controller with fixed PD

gains. The algorithm was also unable to compensate for payload variations, a sup-

posed advantage of LB-MRAC. The conclusion was reached that centralization was

required [231.

2.3.2.2 Adaptive Model-Based Control Slotine and Li have proposed an

adaptive robot control algorithm which consists of PD feedback and full dynamics

feedforward compensation, with the unknown manipulator and payload parame-
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ters being estimated online [39]. The approach to Adaptive Model-Based Control

(AMBC) proposed by Slotine and Li uses parameter adaptation based on Lyapunov

theory to compensate for unknown robotic system dynamics. This algorithm was

successfully demonstrated on the MIT WAM robot [32]. Recent simulation studies

suggest that this algorithm is unstable in the presence of velocity measurement noise

[21].

Sadegh and Horowitz proposed a variation on the AMBC approach which elimi-

nates the velocity measurement problem [33]. The regressor matrix in their "Desired

Compensation Adaptation Law" is strictly a function of the desired trajectory val-

ues. This revised AMBC algorithm has been successfully evaluated at AFIT on the

PUMA 560 and a wide range of implementation issues investigated. Results indicate

a significant performance improvement and show that a priori knowledge of dynam-

ics is not required if learning is permitted (21]. As a result of the success of the

AMBC on an industrial manipulator without a priori knowledge of system dynamic

parameters, AMBC is a promising candidate for application on the UMDH. An ex-

cellent tutorial on various forms of AMBC is in the Spong and Ortega, Adaptive

Motion Control of Rigid Robots: A Tutorial [34].

2.3.3 Artificial Neural Networks Artificial Neural Networks (ANN) models

are composed of many computational elements, often nonlinear in nature, operating

in parallel and arranged in patterns reflecting those of biological neural networks.

The computational elements are connected via weights that may be adapted during

use, that is training, to improve performance [25, 45]. The basic premise in P- plying

artificial neural networks to robot control is to use the network to learn the char-

acteristics of the robot system, rather than specify explicit robot system models.

Although there is widespread interest in this problem within the neural network and

robotic communities, few theories have been validated by actual robot control ex-

periments. This lack of applicaton is due to the computational speed and stability
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problems that result when employing neural networks of sufficient complexity for

realistic robot control problems [29].

2.3.3.1 Cerebellar Model Articulation Controller Many control schemes

have been proposed for neural networks and one in particular has been applied

to a complete robotic system. This control scheme was first proposed by J. S.

Albus as the Cerebellar Model Articulation Controller (CMAC) [1]. CMAC is an

adaptive control system which applies control functions for many degrees of freedom

operating simultaneously by referring to a table rather than mathematical solution

of simultaneous equations. Input commands and feedback variables are combined

into an input vector which is used to address a memory where the appropriate output

variables are stored [17].

The control scheme presented by Albus was adapted by Miller et al. into a

control scheme that is quite different from that proposed by Albus but employs

the CMAC principles [28, 29, 16]. Miller's controller is similar to the computed

torque controllers, however the robot dynamic model is replaced by a neural network

model. A training scheme adjusts the CMAC network on-line based on observations

of the input and output relationships to form an approximate dynamic model of

the robot in the regions of operation. The CMAC network is used to predict the

control torques required to follow a desired trajectory, and these torques are used

as feedforward terms in parallel to a fixed-gain linear feedback controller. These

studies present successful results of real-time experiments which involved learning

the dynamics of a five-axis industrial robot (General Electric P-5), during high-

speed movements simulating industrial tasks. Of note here is that the study was for

movements simulating industrial tasks. There is a low degree of coupling in the five-

axis industrial robot that was used and no payload variation was attempted. The

payload variation had been previously simulated. However, one particularly positive

aspect of the CMAC control scheme is that it is structured in such a way as to be

able to incorporate less conventional sensor inputs such as touch sensors and vision
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systems [27]. It is necessary to determine if similar applications of neural networks

can succeed on more general applications and for a less restricted range of operation.

2.3.3.2 Adaptive Model-Based Neural Network Control Another applica-

tion of artificial neural networks was the work of Capt. Mark Johnson [13]. He

applied neural networks to a PUMA 560 manipulator to provide payload invariant

control. The neural network employed was able to identify the unknown payload

on the manipulator by the trajectory tracking error and correct feedforward con-

trol torques by adjusting the system model. Thus, the neural network was able to

adapt the control scheme to the uncertainty of the manipulator payload. This tech-

nique is not appropriate for the UMDH because it requires a priori knowledge of the

manipulator dynamics.

2.4 Summary

The requirement to provide fine dexterous manipulative control to the Utah/MIT

Dexterous Hand is no small task. Most control schemes developed to date are re-

stricted by trajectory, model dynamics, or other uncertainties. Adaptive Model-

Based Control (AMBC) provides outstanding tracking performance and other de-

sirable manipulator capabilities on a PUMA 560 with limited a priori knowledge.

These traits could make AMBC a suitable alternative for the UMDH. Artificial neu-

ral networks, in particularly CMAC, also offer the potential of solving some of the

control problems that are encountered on today's manipulators, especially one as

highly coupled and nonlinear as the UMDH.
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III. Digital Controller Development

3.1 Problem Analysis

Gross motion control efforts at the Air Force Institute of Technology (AFIT)

are moving into the realm of dexterous manipulation. The platform for these studies

is the Utah/MIT Dexterous Hand (UMDH). The control system capabilities for the

robotic hand system have been limited to the internal analog control system provided

by the manufacturer of the robotic hand system, SARCOS Inc. [9]. In order to

expand the avenues of future dexterous manipulation studies on this platform, a

new digital control system environment must be developed for the UMDH. The

first objective was to create the experimental environment for the robotic hand

system. The resultant system must support the experimental evaluation of modern

control methods. Once the environment was established, the baseline Position-plus-

Derivative digital controller was developed and evaluated.

3.2 Experimental Environment

The left-hand version of a UMDH, operating under a revised version of the AR-

CADE environment [18], is the target platform of the control system development

for future dexterous manipulation studies. The UMDH electronics include an inter-

nal analog control system which can be bypassed for external implementation of a

digital control system. The internal analog controller does not provide the tracking

performance or other dexterity requirements needed for emulation of human finger

movement. For this reason the analog control system is completely bypassed and an

external digital control system must be developed and implemented.

The adapted version of the ARCADE environment, ARCADE-HAND, is res-

ident on an IBM PC/AT-386 which uses a serial interface and shares dual-port

memory RAM with an IV3201 real-time processing engine by IRONICS Inc. which
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is based on a 16MHz MC68020 processor [8] and is resident on the UMDH VME-

bus. Figure 3.1 illustrates the control architecture of the robotic hand system and

Figure 3.2 provides a chart of the software operation. The pertinent components of

the newly developed robotic hand control system can best be described by stepping

through the operation sequence. Operation is initiated when the user downloads a

read/write program to the MC68020 through the PC/AT communication port via

the serial interface. Execution of this program begins when a command sequence is

sent through the same port. An IBM PC/AT-VME adaptor provides a RAM piggy

back card as a dual port memory which both the PC/AT and the VMEbus systems

can access. The 128K byte RAM is mapped into unused address space on the two

buses.

The two processors are independent of one another, however, semaphores syn-

chronize the exchange of data through the RAM. The data in the RAM is organized

in a C structure called the BIT-3 Window. This structure is identical in the software

package of each computer and is assigned a designated address in RAM for each com-

puter system. The MC68020 processor commands a set of A/D converters whose

inputs are from the UMDH electionics. The processor reads the data for each digit

from the A/D outputs and writes the velocity, position, and flexion and extension

tension data to the shared RAM. The Intel 80386 processor reads the stored state

variables of the system and computes the desired torques based on the data from

the previous sample period, T8(k - 1). The calculated torques are then converted

to tendon tensions. The tensions are written from the PC/AT to the shared RAM,

read by the MC68020, and then written by the MC68020 to the D/A converters.

The converter output provides tension commands to the manipulator. The indepen-

dence of the processors allows the 80386 to calculate the tendon tensions while the

MC68020 is reading the next system state, and the 80386 to read the state variables

while the MC68020 is commanding the tendon tensions.
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The ARCADE environment, written in FORTRAN [18), was converted to C for

the ARCADE-HAND environment resident on the PC/AT and was compiled using

Turbo C. The read/write program resident on the VMEbus is also written in C and

was compiled for the MC68020 with an Aztex-C compiler [41]. Detailed program

listings are in the internal report generated by this thesis [7].

Theoretically all fingers of the UMDH have similar dynamics. With this in

mind, the testing platform for the robotic manipulator was reduced to Joints 2 and

3 on Finger 3 of the UMDH for analysis of the digital controller and PD control

algorithm. These two joints were chosen over Joints 1 and 2 because of the difficulty

involved in maintaining Joint 3 in a fixed position throughout a trajectory involving

Joints 1 and 2. All three joints were digitally controlled but control algorithms

were only applied to Joints 2 and 3. Joint 1 was fixed stationary by commanding

appropriate constant tensions. The chosen test configuration for Joints 2 and 3

thus resembles the two degree-of-freedom elbow manipulators frequently used in

control simulation studies. This choice was made to simplify the analysis of the

control system and maintain a sample period adequate for control purposes. The

control system is capable of performing at a sample period (T,) of 2.5 milliseconds

for an entire finger, thus providing 400 Hz operation. The later addition of the

Adaptive Model-Based Control (AMBC) algorithm to the baseline PD controller

increased the required computation time and resulted in a change in the sample

period, T.. The sample period was increased to 3.0 ms, thus operating at 333 Hz.

This speed still proved capable of adequately sustaining manipulator performance.

The sample period is quickly increased further if additional fingers are included in

the algorithm. The primarily limitation of the sample period is the access times of

the A/D and D/A converters and the set-up time required to execute the A/D and

D/A access. Table 3.1 lists the present capabilities of the Read and Write access

times to the A/D and D/A converters. Reading involves the collection of position,
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velocity, and extension and flexion tension data from the A/D converter. Writing

involves commanding extension and flexion tensions to the D/A converter.

Table 3.1. Read and Write Access Times

READ (ms) WRITE (ms)
Hand 4.3 Two Fingers 0.9
Finger 1.7 One Finger 0.6

Joint 1.3 Joint 0.5

3.3 Baseline Digital Controller Development

The output tension vector (r) of the digital controller is of the form

T = TAr + Too. (3.1)

The output tension vector is composed of the transformation matrix (TA41) of the

robotic finger, the total torque vector (r) which consists of feedforward (r1 1 ) and/or

feedback (rjb) torques, and the cocontraction torque vector (r,). The sign of the

output torque vector components indicate whether the magnitude is to be applied as

flexion or extension torques. The transformation matrix accounts for the coupling

introduced by the overlapping tendon routing through the robotic finger. The matrix

is of the form

l/R 1  -1/1R2 0
TM = 0 /R2 -1/R 3  (3.2)

0 0 1/R 3

where R, and R2 are the pulley radii of Joints 1 and 2, respectively. The cocontrac-

tion torque vector (Too) is introduced to keep a minimal tension on the tendons at all

times. This prevents slack in the tendons, which otherwise might result in the ten-

dons falling off of their pulleys. Impedance is controlled by (T,,). The cocontraction

torque vector also keeps the joints from drifting in either the flexion or extension
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direction due to a lack of force opposing the motion. The cocontraction values se-

lected for the digital controller were selected to optimize the tracking performance

and are not necessarily optimum for controlling drift. The actual values for Too are

10.0 Newtons for Joint 2 and 15.0 Newtons for Joint 3.

The main component of the output tension vector (T) is the total torque vector

(r). The feedforward torque vector (rf) component of r is initially set to zero for

the digital controller environment. For the feedback torque vector (Tr1 6) component

of r a Proportional-plus-Derivative algorithm is implemented. Proportional-plus-

Derivative is the simplest control algorithm which can provide adequate tracking

response and asymptotic stability for a robotic manipulator [3]. The general form of

the Proportional-plus-Derivative feedback algorithm is given by

Tfb(t) = KD (t) + Kpe(t). (3.3)

The position error vector of a single joint is the calculated difference between the

desired and actual angular position as shown by Equation 3.4. The velocity error

vector is given by Equation 3.5 as the difference between the desired velocity and

the time differenced calculation from the position of the previous cycle. The sample

period is T,.

e(t) = qd(t) - q(t). (3.4)

i(t) = id(t)- [q(t) - q(t - 1)]/T, (3.5)

The position and velocity gains are represented by the constant diagonal matrices,

Kp and KD respectively.

The delay inherent in digital implementation is handled by using error informa-

tion from the previous sample time in the current cycle output torque calculations.

The position error, velocity error, and feedback torque vectors then become

e(k - 1) = qd(k - 1) - q(k - 1), (3.6)
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i(k - 1) = 4dCk - 1) - [q(k - 1) - q~k - 2)]IT, (3.7)

and

r(k) = fb(k) = KDik- 1) + Kpe(k - 1). (3.8)

The position error is tested by commanding each of the last two links of the

robotic finger through 60 degree trajectories in 1.2 seconds. The original trajectories

are executed in the horizontal plain to exclude gravity effects; that is the hand is

placed on its side. Joint 0 is held motionless by the internal analog controller of

the UMDH , while Joint 1 is held as firmly as possible in the extended position by

the digital controller. The digital controller must be used to maintain Joint 1 in a

stationary position because the analog controller is unable to hold Joint 1 in place

while Joints 2 and 3 run through their trajectories. The initial position of the robotic

finger is full extension and the final position is Joint 1 extended, and Joints 2 and 3

at 60 degrees. The PD controller moves the robotic finger to its initial position, at

which time an algorithm can be selected to track the desired trajectory. A minimum

jerk trajectory generator was used to calculate the test trajectory [18]. Figure 3.3

shows the position, velocity, and acceleration profiles. The velocity and acceleration

achieved by the UMDH with this trajectory are significantly higher than those of

larger manipulator platforms such as the PUMA 560 [24].

3.4 Baseline Digital Controller Evaluation

The Proportional-plus-Derivative feedback loop gains of Equation 3.8 used dur-

ing testing are listed in Table 3.2. These values were determined by numerous

Table 3.2. PD Feedback Gains

Link i Position(Kp) Velocity(KD)
2 7.5 4.5
3 0.045 0.030

experimental runs. Stiffer gains were initially attempted for the PD controller but
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the initial tracking error due to stiction rmplified to produce a torque that was so

severe the finger went to full flexion before the controller could respond to slow down

the exaggerated response. The PD gains used produced the best case tracking error

shown in Figure 3.4. The oscillatory tracking behavior of the joints, especially for

Joint 3, is consistent throughout this thesis. This behavior is attributed to over-

driving the output torques of the joints. The Recommendation Section of Chapter

5 addresses some possible solutions for reducing the oscillations.

The PD controller works for point to point control but is inadequate for the high

speed tracking of which the UMDH finger is capable. This makes the PD controller

unsuitable for dexterous manipulation on the UMDH. Therefore, the PD digital

controller of the ARCADE-HAND environment is used to provide the foundation

of the UMDH digital control system while new control methods are investigated for

future studies of dexterous manipulation.

3.5 Summary

A digital controller evaluation environment was developed for the Utah/MIT

Dexterous Hand. A PC/AT-386, an IRONICS MC68020 based single board com-

puter, and A/D and D/A converter cards in a VMEbus are the major components

of the digital control system. A dual port RAM is used to transfer data and com-

mands between the two processors. ARCADE has been adapted to this platform as

ARCADE-HAND. The baseline control algorithm in the ARCADE-HAND environ-

ment is a simple Position-plus-Derivative (PD) controller. The control environment

is resident on the PC/AT. The ARCADEJIAND control environment provides the

platform from which future studies in dexterous manipulation can build.
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IV. AMBC Development and Evaluation

4.1 Introduction

Central to providing for the grasping and manipulation of a tendon-driven dex-

terous end-effector is the development of an adequate control system. The initial

task in that development is to determine the requirements of that control system

and then what type of control algorithm best fulfills those requirements. The follow-

ing is a list of baseline requirements that must be addressed by the control algorithm

of choice [3, 22, 20].

" High speed tracking,

* Accurate end-point performance,

" Multiple trajectory tracking, and

* Payload invariance.

In order to meet these requirements, the control system must address several

issues inherent in the construction of a tendon-driven robot. The controller must

compensate for the disturbances produced by the coupled and nonlinear nature of

robotic link dynamics. Included in link dynamics are Coriolis and centrifugal forces,

inertial forces, and gravitational forces. The indirect tendon-drive system used in the

UMDH also produces significant disturbances due to viscous and coulomb friction,

tendon elasticity, pneumatic actuation effects, and tendon routing, further compli-

cating the overall robotic system dynamics.

The Single Model-Based Controller (SMBC) has been proposed to address many

of the issues listed above. This control algorithm has been implemented to solve

the compensation problems for direct-drive [2, 14, 15] and industrial manipulators

with high torque amplification drive systems [24, 19, 21]. However, the SMBC con-

trol system requires a priori knowledge of the manipulator dynamics, payload, and
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trajectory to function effectively [24]. The dynamics of the UMDH do not lend

themselves to such availability. The robotic hand is also on a much different scale

than the direct-drive and industrial manipulators on which SMBC was previously

evaluated. The small scale moving parts of the robotic hand do not induce the

dominant inertial and gravitational effects of larger robotic manipulators. Instead,

the pneumatic indirect-drive system and the tendon peculiarities become the dom-

inant dynamics. The compression and inertial effects of the pneumatic actuators,

along with the elasticity and coupling of the tendons have not been, and probably

cannot be, accurately modeled. Consequently, despite SMBC's success on industrial

manipulators, it is unable to compensate for the dynamic effects on the UMDH,

and thus does not meet the requirements as a controller of this robotic manipulator.

Therefore, a different corir&" ystem algorithm must be considered.

Adaptive Mod -I sed Control (AMBC) has been proposed as a control system

which more completely addresses the issues in question. As with SMBC, this control

system has also been used to solve the control problems for direct-drive [6, 38, 30

and industrial manipulators [37, 42, 19, 43, 26, 21]. However, AMBC is able to

compensate for unknown nonlinear dynamic effects in robotic systems [39, 34]. Ap-

plication of AMBC methods to industrial manipulators such as the PUMA-560 has

resulted in significant performance improvements f19, 21, 24]. The development of

the application of this control algorithm with ARCADE-HAND on a finger of the

UMDH is discussed next. This is followed by the implementation and evaluation of

an AMBC algorithm for control of the UMDH.

4.2 Adaptive Model-Based Control Development

The general form of the output torque vector (r) for a model-based control

algorithm can be divided into feedforward (rff), feedback (rib), and auxiliary input

(r.-) components.

T = rsf + rTb + Tax (4.1)
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The feedforward torque of the adaptive model-based control (AMBC) in this the-

sis is defined as a matrix of known transcendental functions multiplied by a linear

parameter vector:

rff = )'(qd,4d, 4d)a (4.2)

The AMBC approach proposed by Slotine and Li uses parameter adaptation based

on Lyapunov theory to compensate for model-based controller limitations [39]. The

linear parameter vector which Slotine and Li proposed is given by

a =f -11- (q, , 44[,(4-) + A(qd - q)] (4.3)

where

qr =qd + A(qd q) (4.4)

, 4d + A(qd- 4). (4.5)

Their proposal is slightly different from the approach actually implemented in the

control algorithm being applied to the UMDH. The reason for the variation is that

recent studies suggest that Slotine and Li's algorithm is unstable in the presence of

velocity measurement noise (33, 35]. It so happens that the velocity data for the

Utah/MIT Dexterous Hand is corrupted by spike laden position data from which

the velocity is calculated. (See Equation 3.5.) Therefore, the variation proposed

by Sadegh and Horowitz [33] on the passivity-based adaption approach, which elim-

inates the velocity measurement problem, is applied to the AMBC algorithm de-

veloped for the robotic finger. As a result of this variation, the regressor becomes

strictly a function of the desired trajectory values and the adaption law is changed

from that of Equation 4.3 to

a f r'Y'(qd, 4d, 4d) [(d - 4) + A(qd - q)]. (4.6)
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The A matrix is restrained by
A (4.7)

A<K

The feedback torque is given by

rib = KD(4d - 4) + Kp(qd - q) (4.8)

and finally,

= 0. (4.9)

The auxiliary torque (Ta) is introduced to compensate for the additional distur-

bances caused by using the desired values in the regressor. However, while maximum

tracking performance may require both robust feedback and adaptive feedforward

compensation, their effects must be separated for proper analysis of algorithm po-

tential.

The regressor matrix (Y) is based on the known structure of the manipulator

system dynamics. The manipulator platform for this thesis is joints 2 and 3 of

finger 3 on the UMDH. These two joints form a planar elbow manipulator with

revolute joints. The system dynamics and a regressor matrix for this configuration

are presented in the tutorial by Ortega and Spong when they consider a planar

manipulator with two revolute joints [34]. The regressor matrix is further enhanced

by additional coulomb and static friction terms for each joint as developed by Leahy

and Whalen [21].

The two finger UMDH regressor (Y) is implemented as a 2x13 matrix.

Y(qd, 4d, qd) = (4.10)

qdl 4d2 4d + qd2 2cosqd2qdl + CoSqd'Ad2 - 2 sinqd2 dl d2 - inqd2qd22

0 0 4d] + 4d2 cosqd2qdl + sinqd2qd'2,2
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qdl qdl + qd2 cosqdl cosqdl cos(qdl + qd2) qdl 0 agnqdl 0 ]
0 dl + 4d2 0 0 cos(qdl + qd2) 0 qd2 0 sgnqd2

where sign(x) is defined as:

1 x>0

agn(X) = 1 (4.11)
-1 r<0

The first six positions are related to inertial parameters. Gravitational forces are rep-

resented by parameters 6-8, and the final four parameters were added to account for

viscous and coulomb friction. These three categories compose the thirteen diagonal

positions of the regressor matrix which are employed in the feedforward calculation

for the two joints.

The final step in the digital control system development was the implementation

of the AMBC algorithm of equations onto a digital computer. The delay inherent

in digital implementation was handled by using error information from the previous

sample time in the current cycle output torque calculations. This changes the AMBC

equations to the form

rff(k) = }(qd(k), ld(k), 4d(k)ja(k) (4.12)

a(k) = T -y[qd(k), 4d(k), 4d(k)][(6(k- 1) + Ae(k - 1)] (4.13)

g(k - 1) = 4d(k- 1) - [q(k - 1) - q(k -2)]/T. (4.14)

e(k - 1) = qd(k - 1) - q(k - 1) (4.15)

Trb(k) = KD6(k - 1) + Kpe(k - 1) (4.16)

r,(k) = 0 (4.17)
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where T, was the sample period of 333 Hz and the integration was accomplished

using the Adams-Bashforth Two-Step method [5].

4.3 AMBC Implementation

Four main issues are involved in the successful implementation of the AMBC al-

gorithm in the digital controller -vironment of the Utah/MIT Dexterous Hand. The

most significant issue is tuning the adaptive controller. This was a time-consuming

and painstaking process and is described in the first subsection. Subsequent subsec-

tions address the issues of parameter initialization and convergence.

4-.3.1 Tuning the AMBC Controller AMBC tuning is a very heuristic process

which is dependent on the manipulator, the number of adaptive parameters, and

the individual components of the F- 1 matrix. The simple selection of a diagonal

F- ' matrix of common elements can result in improved performance or disaster. At

a glance the procedure used to tune the F-' diagonal parameters may seem very

straight forward, but in reality this is not the case. Aggressively adapting certain

parameters can cause instability. Also, the parameters are greatly interdependent.

While a new value for a parameter may cause instability under one circumstance,

that same value may enhance performance under different circumstances.

The tuning process was maue even more difficult due to certain peculiarities of

the tendon-driven manipulator. The primary obstacle was that when the manipula-

tor is moved to the initial position by the PD controller, the existing tendon tensions

upon completion of the movement are not accurately determined or preset. The dif-

ficulty is that these tendon tensions are part of the initial state of the test trajectory,

restilting in variations of the initial state values of the manipulator at the start of

a test trajectory. These variations sometimes resulted in unstable operation, or a

run which was completely unordered. In other words, these runs were completely

outside the normal training progression. Consequently, some operator discretion was
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required to determine which training runs were unordered and to discard them from

the tra.i.g sequence. If the unordered runs are not discarded, then the dynamic pa-

rameter values resulting from such a run are at worst unstable and at best elongated

the training period. Also, the training sequence was made somewhat indeterminate

due to this tendency because the training runs have varied initial states, sometimes

moving the dynamic parameters into an incorrect space. The first step taken in the

AMBC tuning involved establishing the r- 1 matrix diagonal for an established A

and PD gains. Next, changes in A and the PD gains were conducted to determine

their effects.

4.3.1.1 Tuning the F- Matrix Unlike previous studies in which the nom-

inal values of the parameter vector were known a priori [24], parameter vector values

are completely unknown for the fingers of the UMDH. Consequently, the 1-  matrix

was tuned from an initial zero parameter state. Initial attempts to tune the F- 1

matrix were conducted with values in the ranges previously generated by in-house

AMBC trials on the PUMA 560 [213, but these values produced unstable AMBC

performance. Therefore, the AMBC was run as closely to the baseline PD controller

as possible, that is the feedforward torque was reduced almost to zero leaving the

PD controller as the more significant contributor of the output torque. The diagonal

adaptive gains of the regressor matrix were each "turned on" separately, starting

from values as low as 10- . The general stability range was then established for

each adaptive gain. The range went from as low as 10- to as high as 10-'. The

13 adaptive gains were then separated into four groups, according to their dynamic

representation. The first group consisted of the coupling inertial adaptive gains,

0-3. The next group was simply the inertial adaptive gains, 4 and 5, of each joint.

Gravitational adaptive gains 6-8 composed the third group. The final group was the

four friction representation adaptive gains, 9-12.

Each of the representative groups was independently "turned on" in the regres-

sor matrix with each adaptive gain of the group assigned the value determined by
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the individual tests. Again, adjustment of the r-1 values within each group was

required as some groups became unstable or simply exhibited poor performance.

Once the four groups were tuned, all 13 adaptive gains of the regressor matrix were

activated together. Only one of the 13 adaptive gains was not necessary for maxi-

mum performance. Whenever the sixth value of the r-, diagonal matrix was given

a value it led to instability of the AMBC algorithm. Consequently, this value was

set to zero and remained as zero in the final regressor matrix. With the full set

of adaptive gains, the performance of the matrix was now acceptable. Lastly, each

adaptive gain was increased and decreased as a member of the complete regres-

sor matrix diagonal to determine if performance would be improved further. This

resulted in two increases in the adaptive gains. The final set of 1-' diagonal val-

ues determined by this sequence of tests and utilized for subsequent evaluations was

(0.0002,0.0001,0.0001,0.0001,0.0001,0.0,0.001,0.001,0.001,0.002,0.01,0.001,0.01).

The implementation of these values in the AMBC algorithm validated the AMBC

concept for control of the UMDH with the tracking performance of Figure 4.1. The

performance cf Joint 2 with the AMBC controller is superior that of the PD con-

troller. However, the Joint 3 performance actually degraded. The AMBC's inability

to improve the Joint 3 tracking is believed to be a combination of two factors. First,

the limited dynamic excitation in the trajectory for Joint 3 provides little for the

AMBC adaptive mechanisms to learn. The second reason for the poor Joint 3 per-

formance is the over-driving of the Joint 3 tensions. This second factor is discussed

further as credence to this hypothesis unfolds.

A number of factors cause the training period of the AMBC algorithm on the

robotic hand finger joints to be significantly longer than for a robotic manipulator

such as the PUMA 560. These factors include the lack of nominal dynamics, the

variations in the initial states, and the limited excitation of the trajectories which

the UMDH is able to P :hieve. Additional tuning of groups and individual adaptive

gains may continue to enhance algorithm performance, however, this was beyond
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the scope of this thesis. The objective was the validation and initial evaluation of

the AMBC concept on a tendon-driven manipulator for emulation of human finger

movement, not to produce the best UMDH controller.

4.3.1.2 Lambda (A) Determination The value assigned to A determines

the distribution of weight given to the position and velocity error in the i law of

Equation 4.13. Consequently, changes in this value are expected to effect the AMBC

algorithm's ability to track position and velocity. Tests were conducted to evaluate

whether this hypothesis was true. The A matrix was set to a constant value ap-

proximating the ratio of position gain to velocity gain. For evaluation purposes the

selected value was 100. The effects of variations in tracking performance were noted

for a decrease in A from 100 to 50. Figures 4.2 and 4.3 demonstrate the effects of

the change in A on the tracking error. As expected, the AMBC controller settles on

the endpoint more quickly with A = 100 due to its emphasis on position error, while

taking longer to adapt the peak tracking error. The smaller A demonstrates better

initial tracking in the form of decreased peak errors as a result of the emphasis on

velocity error but exhibits poorer endpoint performance. Also, the smaller A value

improves the Joint 3 performance, thus supporting the hypothesis that Joint 3 is be-

ing over-driven. Note that the AMBC algorithm for A = 100 soon compensates for

the initial lack of peak tracking error performance, and in the early training stages

produces the better tracking error profile. The next test considers the long term

effects of the change in A.

This test evaluates the ability of the AMBC control algorithm to compensate

for changes in the weighting of the position and velocity, just as it did to unknown

parameters in the dynamic model. The value for A has again been decreased to 50.

However, for this test the trained parameters for A = 100 are used, and training is

continued with the new value of A. Figure 4.4 reveals that although the tracking

error of tOe new A degrades initially, by the ninth run the AMBC algorithm has

compensated for the decrease in A and achieved similar tracking performance. The

4-9



Joint 2

0.120

0.100

0.080

0.060

0.040

0.020

w 0.000 --- ------.. . . . ...... ....%I, .. .....

-0.040

-006 V

0.00 0.20 0.40 0.60 0.80 1.00 1.20
Time (seconds)

Joint 3
0.150

0.100

0.050

51 0.000 ....... .. . ..

$.4

-0.100

I I

-0.10I

0.00 0.20 0.40 0.60 0.80 1.00 1.20
Time (seconds)

PD Controller
AMBC Controller

Figure 4.1. PD vs AMBC Tracking Error

4-10



value of A does not effect the long term tracking ability of the AMBC controller even

though the higher value for A provides faster training.

4.3.1.3 Effect of PD Gain Variations The PD controller provides the

feedback portion of the AMBC algorithm. Initial AMBC evaluations vsed PD gains

identical to the PD baseline. Once the AMBC algorithm had been established, tests

were conducted to determine the effects of variations in the PD gains on tracking.

The PD gains in Table 3.2 were softened by at least one-third to the values recorded

in Table 4.1. In general, reducing the feedback loop stiffness causes a degradation

Table 4.1. New Soft PD Feedback Gains

Link i Position(Kp) Velocity(KD)
2 5.0 3.0

3 0.030 0.020

in tracking accuracy. However, the effects of the new PD gains are compensated

for by the AMBC training mechanisms. Figure 4.5 shows the effect of the soft PD

gains on the AMBC performance when using parameters that were trained with the

higher PD gains. Although the tracking error for the initial training runs with the

trained set of parameters and the reduced PD gains is initially worse than the new

PD controller tracking, the performance quickly improves. The tracking performarce

of the sixth training run is superior to that of the stiff PD controller, and by the

thirteenth run the tracking has improved by reducing peak tracking errors. These

new PD gains with the AMBC algorithm are the second and final time that the

oscillatory behavior of Joint 3 is consistently decreased, indicating that the original

PD gains are too stiff for the sample rate. A training sequence was not conducted

from ,4 = 0 for the softer PD gains because the manipulator became less stable and

training too difficult.

Figure 4.6 compares the AMBC tracking with the soft gains and the stiff gains.

The tracking with the soft gains is comparable to the stiff gain tracking, except for
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a small loss in endpoint performance. The AMBC algorithm removes the stiff gain

requirement for good tracking, which also removes the oscillation previously seen for

high gain implementations.

4.3.2 Parameter Initialization The transient tracking performance is directly

dependent on the a priori knowledge of the parameter vector. In previous AMBC

studies conducted on the PUMA 560 [21] the parameters were separated into both

known and unknown dynamics, a,, and a. Although nominal dynamics aide in AMBC

performance, the algorithm has the capability to adjust the parameters to compen-

sate for the disturbances of a reduced dynamic model. In the UMDH test case there

is no dynamic model, thus the adapted parameters must compensate for the com-

plete dynamic model. The parameters represented in Equation 4.13 by a are thus

initially set to zero, reducing the AMBC to a pure feedback controller at the start

of the evaluation. Figure 4.7 reveals the progressive success that can be achieved in

tracking performance even when all the dynamic parameters are initialized to zero.

The lack of dynamics for Joint 3 to learn limited its ability for any real improvement.

4.3.3 Parameter Convergence AMBC has the theoretical ability to learn the

actual dynamic coefficients for the manipulator dynamics, given a trajectory with

persistent excitation (21]. Final parameter values are dependent on both initializa-

tion and adaptation gains. When the a priori parameter knowledge is non-existent,

as in this application on the robotic hand, the r - I influence is significant. The closer

the F-' matrix reflects the relative magnitude of the actual parameters, the closer

the parameters will reflect the physical values.

Several factors contribute to the extended training period of the UMDH. The

lack of nominal parameters results in a longer adaptation period for the robotic hand.

The variations inherent in the initial states of the training runs often contribute to

both longer training sequences and an indeterminate number of required training

runs per training sequence. Another contributor to the deficiency in training the
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parameters on the hand is the limited dynamic excitation achieved with the trajec-

tories which are typical of human finger movement. The trajectories on a PUMA

560 can be designed for peak parameter excitation. On the UMDH the trajectories

are crnstrained by the extension and flexion of the finger joints. These movements

lack the rotational tendencies of an industrial manipulator, and the joints typically

either extend or flex in unison. The AMBC algorithm needs 10 to 20 training runs

for the UMDH joints, where as the PUMA 560 requires only 4 to 6 training runs

[24]. Figure 4.7 reveals the adaptation and learning capabilities of the AMBC ap-

proach for the two joints of the UMDH finger with no nominal parameters. Note

that training is still progressing even after 20+ iterations. The slight degradation in

Joint 3 performance throughout the training progression again indicates the lack of

dynamic excitation from which it is able to learn.

Parameters can be arranged such that different sets produce identical profiles.

The adaptation mechanism does not learn the actual physical values, but responds

to the effect of the parameters on the tracking error. Two sequences of multiple

runs, each with no nominal parameters, will produce different sets of parameters

and varied tracking error profiles. Figure 4.8 includes the best-case runs from two

different adaptation sequences which started from ground zero with identical Ir-

matrix values and A = 106. Even though the endpoint and peak tracking errors are

very similar, the error profiles of the two sequences vary greatly. The adaptation

parameters also vary significantly. Table 4.2 compares the starting and finishing

adaptation parameters of both best-case runs. The magnitudes of the sequence

2 parameters are significantly higher than those of sequence 1, with the greatest

disparity being the sign difference of the twelfth parameter.

Once training has achieved the best-case set of dynamic parameters, one may

be inclined to discontinue the adaptation mechanisms. However, this line of thinking

is flawed. Even though the parameters have been trained to a path in the parame-

ter space which produces the best tracking, the adaptation mechanisms continue to
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adapt to the dynamics throughout the trajectory. The dynamic parameters do not

remain constant throughout the trajectory. Evidence of this is given in Table 4.2

which shows how the parameters continue to change from the start to the comple-

Table 4.2. Adaptation Parameter Comparison

Pos. Run 1: Start Run 1: Finish Run 12: Start Run 12: Finish
0 0.0043 0.0033 0.0109 0.0089
1 0.0020 0.0015 0.0055 0.0045
2 0.0007 0.0014 0.0061 0.0024
3 -0.0035 -0.038 -0.0105 -0.0130
4 0.0020 0.0015 0.0055 0.0045
5 0.0000 0.0000 0.0000 0.0000
6 0.0145 0.0139 0.0209 0.0201
7 0.0145 0.0139 0.0209 0.0201
8 0.0089 0.0088 0.0136 0.0128
9 0.1112 0.1080 0.2020 0.1950

10 0.0444 0.0456 0.0744 0.0656
11 0.0181 0.0174 0.0256 0.0247
12 -0.0234 -0.0208 0.0176 0.0161

tion of a run. Figure 4.9 reveals what happens when the adaptation mechanism is

"turned off" when executing a trajectory. The parameter values implemented are

those from sequence 2 of Table 4.2. Whether the parameter values used are start

or finish values of the best-case trajectory does not help the tracking performance if

the adaptation is stopped. As the manipulator proceeds through the desired path,

the lack of adaptation results in significant tracking degradation. The degradation

of tracking for the UMDH joints due to "turning off" the adaptation mechanism was

more significant than for the PUMA 560 [24, 21]. Once optimum dynamic param-

eters have been achieved, that is the start values of the best tracking performance

obtained, these values should be repeatedly used to initialize the parameters for fu-

ture executions of the trajectory. Further training should be discontinued, however,

the adaptation mechanisms should remain on for execution of the trajectory.
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4.4 Experimental Performance Evaluation

The final step in the digital controller development is the performance evalua-

tion of the AMBC algorithm. The evaluation must consider whether the algorithm

meets the following tracking requirements mentioned in Chapter 3: compensation

for robotic dynamics by adaption/learning of model uncertainty, multiple trajectory

tracking capabilities, and payload adaptation. The first issue addressed is the ability

of the AMBC algorithm to adapt to model uncertainty, and the tendencies of the

adaptation mechanism. The second issue of concern is whether the AMBC algorithm

can adapt to multiple trajectory tracking. Can the parameters which evolve from

training on one trajectory aide in the tracking of a different trajectory? Finally,

tests are conducted to determine the AMBC algorithm tendencies when unknown

payloads are implemented.

4.4.1 Adaption/Learning of Model Uncertainty Application of AMBC algo-

rithms on platforms such as the PUMA 560 allow for the inclusion of nominal pa-

rameters which provide the algorithm with an initial set of parameters from which

to train [21]. As discussed in the subsection on Parameter Convergence, a number

of factors cause the training period of the AMBC algorithm on the robotic hand

finger joints to be significantly longer than for a robotic manipulator such as the

PUMA 560. Despite these less than optimal conditions, the AMBC experimental

evaluations indicate that feedforward adaptation provides significant compensation

for the .inipulator when nominal dynamics are unknown.

In Figure 4.7 the tracking performance of the AMBC algorithm on the UMDH

is compared to the tracking performance of the PD controller which composes the

baseline of the digital controller. The initial run results in a very high joint 2 peak

error. This single high peak error in the first run occurs consistently within the first

two training runs of the AMBC algorithm. By the second run, the tracking error is

improved over that of the PD controller. A look at subsequent plots would reveal the
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continued adjustments of the AMBC mechanisms as the tracking error continues to

fluctuate as in the third run. The fluctuations gradually diminish as the manipulator

becomes more stable and tracking error decreases. However, despite the training

progress intermittent large tracking errors continue to occur. This is indicative of

the non-asymptotic training progression of the AMBC algorithm. Similar results

have been previously reported for the PUMA 560 [24, 21] The best-case tracking

profiles are achieved after twenty to thirty runs. Figure 4.10 shows the training

progression of selected AMBC training runs en route to the best-case profile.

4.4.2 Multiple Trajectory Tracking Once the AMBC algorithm was trained

for the test trajectory, a new test trajectory was implemented to determine the

algorithm's ability to track multiple trajectories. Tests were performed to determine

the response of the AMBC algorithm to the new trajectory. More specifically, the

tests consider the transportability of the F- 1 regressor matrix which was tuned for

the initial test trajectory and the adaptability of the dynamic parameters which

resulted from the trial runs of the initial trajectory. The change instituted for the

new test trajectory is that the palm of the UMDH is placed facing upwards. The

p,-'ition, velocity, and acceleration trajectory profiles of the joint remain the same.

Consequently, joint motion is no longer across the gravitational field. Joint 2 now

moves directly into the gravity field, wl Joint 3 moves in and out of the gravity

field.

Initially, a set of training runs was made from ground zero using the F- regres-

sor matrix diagonal values tuned for the first trajectory. In Figure 4.11 two tracking

error profiles of the AMBC runs are presented and compared to the PD controller

performance for the new trajectory. The AMBC algorithm was able to track t6e

new trajectory and outperform both the PD controller and the AMBC performance

on the first trajectory. The improved AMBC performance on the new trajectory

may result from the increased dynamic excitation of the new trajectory into the

gravity field. Also, the AMBC tracking of the new trajectory indicates that the r-
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matrix is transferable to other trajectories. Figure 4.12 compares the AMBC track-

ing performance for the two trajectories, both trained from & = 0. Now that the

transportability has been determined, the next issue is the adaptability of the dy-

namic parameters trained from the first trajectory. In theory these parameters go to

the correct i values of the manipulator and are trajectory independent. In practice

these parameters migrate to the specific physical dynamics of the trajectory on which

they are trained. The results of AMBC training with the 1-' matrix diagonal values

tuned for the first trajectory, and the dynamic parameters resulting from training

with the first trajectory are shown in Figure 4.13. Training runs were conducted and

are compared to the PD controller performance. The dynamic parameters are not

directly adaptable from one trajectory to the other, but the tracking is still stable

and is only slightly worse than the PD tracking. Just as the AMBC adaptation

mechanism is able to compensate for unknown dynamics, the mechanism adapts to

the change in dynamics caused by the new trajectory in the same way.

4.4.3 Payload Adaptation Finally, tests are conducted to determine the adapt-

ability of the AMBC algorithm to an unknown payload on the robotic finger. The

payload consists of a Lincoln penny taped to the underside of Link 2. The original

test trajectory is executed for the tests. Figure 4.14 shows the ability of the AMBC

algorithm to compensate for the unknown payload with no a priori knowledge of the

manipulator dynamics. The training is initiated from ground zero, that is a = 0,

and the tracking performance is soon improved over that of the PD controller, just

as it was without the payload. Figure 4.15 highlights the comparison of the AMBC

vs. PD tracking variations due to payload. The AMBC training mechanisms are

also able to provide the same caliber of tracking performance with or without the

payload. On the other hand, the initial tracking of the PD controller degraded with

the addition of the payload.

The next test examined whether the dynamic parameters achieved b3 training

without a payload improve tracking with a payload. The trained set of parameters
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are used to initialize the AMBC algorithm and new training runs are executed with

the unknown payload. Figure 4.16 shows that from the very first training run, the

AMBC algorithm with the dynamic parameters from the no payload case tracks

better than the PD controller. Also, the dynamic parameters quickly retrain for

the dynamics of the unknown payload and enhance the tracking performance almost

threefold. Table 4.3 compares the parameter values at the start and finish of the first

and last training runs with the payload. Initializing the AMBC algorithm with the

Table 4.3. Adaptation Parameter Comparison: Payload

Pos. Run 1: Start Run 1: Finish Run 12: Start Run 12: Finish
0 0.0043 0.0056 -0.0005 -0.0002
1 0.0020 0.0029 -0.0002 -0.0000
2 0.0007 -0.0002 0.0000 0.0002
3 -0.0035 -0.0128 -0.0011 0.0004
4 0.0020 0.0029 -0.0002 -0.0000
5 0.0000 0.0000 0.0000 0.0000
6 0.0145 0.0199 0.0149 0.0142
7 0.0145 0.0199 0.0149 0.0142
8 0.0089 0.0123 0.0113 0.0112
9 0.1112 0.1880 0.1375 0.1312
10 0.0444 0.0578 0.0373 0.0280
11 0.0181 0.0248 0.0186 0.0177
12 -0.0234 0.0138 0.0172 0.0152

previously trained no-payload parameters improved the stability of the robotic finger

and allows faster adaptation to the unknown payload than when the parameters

are initialized to zero. The difference between tracking accuracy with and without

payload is negligible after learning. This was the same conclusion reached for the

slower trajectory on the PUMA 560 [21].

4.5 Summary

The control requirements for the Utah/MIT Dexterous Hand were discussed and

an AMBC algorithm was selected as the initial control method evaluated to meet
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the requirements. An AMBC algorithm was developed for the gross motion control

of two proximal joints of one finger of the UMDH. The foundation of the AMBC

algorithm is the approach proposed by Slotine and Li [391, with the variations sug-

gested by Sadegh and Horowitz [33]. The AMBC algorithm was coded for evaluation

under the ARCADE-HAND environment. This is the first known application of an

AMBC algorithm on a pneumatic tendon-driven manipulator. The AMBC imple-

mentation issues of tuning, parameter initialization, and parameter convergence are

discussed as they pertain to operation of the UMDH. An experimental evaluation

of the AMBC algorithm performance on the UMDH robotic manipulator was con-

ducted and comparisons were made to previous results obtained on the PUMA 560.

The evaluation tests revealed that the AMBC algorithm is able to compensate for

dynamic model uncertainty, provide multiple trajectory tracking, and adapt to un-

known payloads. Indications are that the range of applications of AMBC can be

extended to manipulators whose dynamics are dominated by drive system forces.
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V. Conclusions and Recommendations

5.1 Summary

A digital control environment, ARCADE-HAND, was proposed, developed, and

implemented for the Utah/MIT Dexterous Hand (UMDH). The baseline controller

for the digital control system is a Position-plus-Derivative (PD) feedback control

loop. This controller was developed and evaluated for applicability to the tendon-

driven UMDH. Once the new digital test platform was completed and the PD con-

troller established, an alternative control algorithm was developed and evaluated.

Adaptive Model-Based Control (AMBC) was determined to be a promising prospect

for control of the UMDH for human movement emulation. Previous implementations

of AMBC were discussed and the theory behind AMBC was presented. Manipulator

specific variations were made to previous implementations of AMBC to tailor the al-

gorithm for operation in the ARCADE-HAND environment. The AMBC algorithm

was tuned for the UMDH and tests were conducted to determine the performance

characteristics. Additional tests evaluated the ability of the AMBC to meet the

requirements needed for emulation of human finger movement.

5.2 Conclusions

The ARCADE-HAND experimental environment proved suitable for dexterous

control and manipulation studies on the UMDH. Evaluation of the baseline digi-

tal controller of this environment found the PD controller to be lacking important

attributes required for dexterous motion and manipulation studies. The lack of com-

pensation for unknown dynamics which is needed for high speed tracking and payload

invariance led to the development and evaluation of AMBC as an alternative control

algorithm for emulation of human finger movement. The regressor matrix, r - 1, of

the AMBC algorithm was tuned for the test trajectory and provided significant track-

ing improvements after training. Appropriate r -' diagonal values were determined
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by a sequence of tests on the individual adaptive gains and sets of adaptive gains

grouped according to their dynamic representation. Only the fifth adaptive gain of

the thirteen values was not required for the best-case performance. The effects of

other AMBC algorithm components such as A and the PD gains were also tested.

The AMBC adaptive mechanisms compensated for these changes in either of these

components and allowed for the implementation of softer PD gains with little ef-

fect on the tracking performance. The dynamic parameters of the AMBC algorithm

were initialized to zero because of the lack of a priori knowledge available for the

UMDH. Despite the lack of nominal dynamics, the adaptive mechanisms converged

to a best-fit set of parameters that produced a best-case tracking performance. The

number of trai.ing runs required for the UMDH was significantly higher than for

the PUMA 560. The UMDH took 15 to 20 training runs, where as the PUMA 560

took only 4 to 6 training runs. The reason for the large disparity seems to be the

complete lack of nominal dynamics used for the UMDH training and the variations

in the initial state of a UMDH training run. The set of dynamic parameters which

a sequence of training runs converges upon varies amongst training sequences. The

tracking profiles also vary between training sequences.

Experimental evaluation of the AMBC algorithm for emulation of human finger

movement produced promising results. The adaptive niczhanisms of the AMBC

algorithm provided compensation for the unknown UMDH system dynamics. The

resulting tracking performance of the AMBC algorithm was superior to the PD

controller of the baseline system. The AMBC adaptive mechanisms also proved

capable of multiple trajectory tracking and provided accurate tracking whether the

dynamic parameters used were from a previous trajectory or new parameters were

generated for a new trajectory. The AMBC adaptation mechanism adapts to new

dynamics introduced by a change in trajectory, just as it did for unknown dynamics

in the original test trajectory.
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Finally, the AMBC algorithm proved capable of providing payload adaptation.

AMBC tracking performance with the parameters trained for no payload immedi-

ately provided tracking superior to the PD controller tracking, and further training

with the payload quickly increased the disparity between the two control algorithms.

Adaptation for the payload case progressed the same as for other tests in which the

system dynamics were unknown. After a sequence of training runs the parameters

adapted to provide improved AMBC tracking. The AMBC algorithm demonstrated

an ability to compensation for unknown dynamics which allows for accurate high

speed tracking, payload invariance, and multiple trajectory tracking. These are the

requirements set forth for emulation of human finger movement.

5.3 Recommendations and Future Directions

Many areas of investigation may lead to improved performance of the UMDH

for the emulation of human finger movement. Some of these areas are dependent on

the hardware capabilities, while others rest on improved control algorithms. Proba-

bly the most obvious need for improvement is in the fingertip control of Joint 3 of

the UMDH. The significant oscillations produced as a result of the control mecha-

nisms and/or the coupling effects are a definite handicap in the performance of the

robotic finger. A faster sampling rate is a likely solution to this problem. The faster

sampling rate would help eliminate the over compensation of the control mechanism

believed to be producing the oscillations. This would also likely improve Joint 2

performance as well. In order to increase the sampling rate, faster A/D and D/A

converters must be integrated into the UMDH system electronics and the computa-

tion time of control algorithms reduced. Some of the A/D and D/A sampling time

can be reduced by eliminating the retrieval of unused UMDH state variables. For

the AMBC application of this thesis, the collection of the velocity and tension data

could have been eliminated. However, in order to provide a complete baseline digi-
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tal environment, full access to these state variables was provided for future control

implementations.

Another area which may improve UMDH performance is the incorporation of

some of the analog capabilities of the UMDH system into the controller. T. H.

Speeter used digital control to replace the analog PD controller of the UMDH, but

retained the inner most force control loop of the UMDH analog controller to help

stabilize the pneumatic actuators of the UMDH, thus taking full advantage of the

control unit's high speed analog response [40].

Joint drift is another problem area that should be addressed. This problem is

caused by a lack of opposing tension in the joint tendons. To solve this, the cocon-

traction torques could be adjusted to improve drift tendencies of the robotic joints.

The cocontraction torque values used in the AMBC algorithm were chosen for their

optimum tracking provisions with the PD controller. The adaptation mechanisms

of the AMBC algorithm, or similar tendencies of other algorithms, may eliminate

the impact of the cocontraction torques on the tracking performance. This lack

of dependence on the cocontraction torques for peak performance would alvow the

cocontraction torques to be set for optimum drift reduction.

One of the more significant difficulties encountered in the AMBC algorithm

implementation was the varied initial states of a test trajectory encountered at the

start of each training run. To eliminate this inconsistency, one may use the extension

and flexion tension input variables to establish more regular tendon tensions before

executing a trajectory. By adjusting the tendon tensions at the start of a run until

the extension and flexion tension input variables are a predetermined magnitude,

the initial state variations may be reduced.

Future efforts in control algorithm development for the UMDH should focus

on the development and evaluation of an Artificial Neural Network (ANN) control

algorithm for implementation on the UMDH. Initial research conducted oil some

ANN approaches theoretically suitable for the UMDH in the ARCADE-HAND en-
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vironment revealed some promising possibilities. The table look-up schemes of an

ANN approach such as Cerebellar Model Articulation Control (CMAC) would al-

low for fast response once the controller had been trained. CMAC has also been

implemented on an industrial manipulator thus providing a basis for performance

comparisons and a source of general application. The ADALINE controller proposed

by Widrow has been implemented in simulation and also shows promise for learning

the system dynamics of the UMDH.

Adoption of these recommendations will lead to control algorithms better able to

meet the requirements for the emulation of himan finger movement. This capability

will help provide the basis for dexterous manipulation, thus taking another step

towards robotic telepresence.
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